このページにおける、サイト内の位置情報は以下です。


社団法人日本電気技術者協会 電気技術解説講座 文字サイズ変更ヘルプ
Presented by Electric Engineer's Association
ラプラス変換とその使い方4<過渡現象編3>交流基本回路の過渡現象 元東京電機大学短期大学教授 間邊幸三郎

電磁気現象は微分方程式で表され、一般的には微分方程式を解くための数学的に高度の知識が要求される。ラプラス変換は、計算手順さえ覚えれば、代数計算と変換公式の適用により微分方程式が解ける数学知識への負担が少ない解法である。このシリーズでは電気回路の過渡現象や制御工学等の分野での使用を念頭に置いて範囲を限定して、ラプラス変換を用いて解く方法を解説する。今回は、交流基本回路の過渡現象の解き方について解説する。

1.ラプラス変換法の計算手順

 (1) 回路の電圧方程式を立てる。

 (2) 電圧方程式をラプラス変換する。

 (3) (2)のs回路方程式を求めたい量のs関数について解く。

 (4) 求めている量のs関数をラプラス逆変換して、その量のt関数を導出する。

交流RL直列回路

 第1図のように、抵抗Rと自己インダクタンスLの直列接続回路に、t=0でスイッチSを閉じて、交流起電力eを印加した時、回路に流れる電流を求めてみよう。

第1図 RL直列回路 第2図 回路各部の電圧と電流

 第1図 RL直列回路    第2図 回路各部の電圧と電流

 (1) 起電力、電流、電圧降下の正方向を第2図のように定めると、回路各部の電圧は図中の式で示される。この結果、回路の電圧方程式は次式となる。

formula001
formula001

 (2) この電圧方程式をラプラス変換する

 (1)式の電圧方程式をラプラス変換すると左辺起電力イのラプラス変換は、付表1のラプラス変換表(下記に抜粋)を参考にすると、(2)式左辺のイロとなり、電圧降下は右辺のハニホヘとなる。初期値を入れると(3)式、同式を整理して、(4)式を経て、(5)式のs回路方程式が得られる。

formula002
formula002

 (3) (5)式のs回路方程式を求めたい電流のs関数について解くと、

formula003
formula003

 (4) (7)式において、 formula004 formula004 とおけば、s関数部は次のように部分分数分解できる。

formula005
formula005
formula006
formula006

 この結果、I(s)は次式となる。

formula007
formula007

 上式を次のようにラプラス逆変換すれば、電流iが求められる。

formula008
formula008
formula009
formula009

 (20)式の電流iは、内容的に次の2式で示され、(24)式のように表すことができる。

formula010
formula010

 (5) 電流iの波形は第3図となる。

第3図 交流RL直列回路の電流波形

第3図 交流RL直列回路の電流波形

3.交流RC直列回路

 第4図のような抵抗Rと静電容量Cからなる直列回路に、t=0の時スイッチSを閉じて交流電圧eを印加したとき、回路に流れる電流を求めてみよう。ただし、静電容量Cにはスイッチ投入前には電荷はなかったものとする。

第4図 交流RC直列回路 第5図 回路各部の電圧と電流

第4図 交流RC直列回路  第5図 回路各部の電圧と電流

 (1) 起電力、電流、電圧降下の正方向を第5図のように定めると、回路各部の電圧は図中の式で示され、回路の電圧方程式は次式となる。

formula011
formula011

 (2) 上式をラプラス変換すると、(26)式となり、初期値を入れると(27)式、同式を整理した(28)式を経て、(29)式のs回路方程式が得られる。

formula012
formula012

 (3) (29)式のs回路方程式を求めたい電流のs関数について解くと、

formula013
formula013

 (4) (31)式において、 formula014 formula014 とおけば、s関数部は次のように部分分数分解できる。

formula015
formula015
formula016
formula016

 各々のkを(32)式に代入して部分分数式が完成し、この式を(31)式に代入すれば、I(s)の式が整うので、次式によりラプラス逆変換ができ、電流iが求まる。

formula017
formula017
formula018
formula018
formula019
formula019

 (44)式は次式のように表すこともできる。

formula020
formula020

 (5) 電流iの波形は第6図となる。

第6図 交流RC直列回路を流れる電流

第6図 交流RC直列回路を流れる電流

問題1 (31)式のs関数部は次のように変形できる。

formula051
formula051

この関係に着目して、(20)式の結果を利用し(44)式の電流を求めてみよう。

問題2 第4図の交流RC直列回路において、Cの電荷qを使用して電圧方程式を立て、電荷と電流の式を求めてみよう。

4.もっと簡単に解く方法を考える

 電源の起電力が formula021 formula021 の場合、はじめに複素起電力 formula022 formula022 を印加したものとして解き、その結果から虚数部のみを採用すれば、 formula023 formula023 を印加したときの答が求まる、という方法がある。このような計算法を複素起電力法と呼ぶことにする。

 (1)RL直列回路の場合

 回路に複素起電力 formula024 formula024 を印加したときの電圧方程式をラプラス変換すると次式となる。

formula025
formula025
formula026
formula026

 (49)式のs関数部は次のように部分分数分解され、(54)式のように逆変換される。

formula027
formula027
formula028
formula028
formula029
formula029

 したがって複素電流 formula030 formula030 は、

formula031
formula031

 求める電流iは、

formula032
formula032

 (2)RC直列回路の場合

formula033
formula033

 ここで、 formula034 formula034 とおき、上式のs関数部を、次のように部分分数分解し、ラプラス逆変換すると(69)式が得られる。

formula035
formula035
formula036
formula036
formula037
formula037

 複素電流 formula038 formula038 は、

formula039
formula039

 求める電流iは、

formula040
formula040
formula041
formula041

5.初位相のある電圧を印加した場合は、どんな電流が流れるか

 初位相θの場合、複素起電力法によれば、

formula042
formula042

 起電力が formula043 formula043 である場合は、複素起電力 formula044 formula044 で計算し、その虚数部を採用すればよい。

formula045
formula045

となるので、前節の全ての計算に formula046 formula046 を乗じればよく、各回路の電流は次のように求められる。

 (1)RL直列回路

formula047
formula047
formula048
formula048

第7図 交流RL直列回路を流れる電流

第7図 交流RL直列回路を流れる電流

 (2)RC直列回路

formula049
formula049
formula050
formula050

第8図 交流RC直列回路を流れる電流

第8図 交流RC直列回路を流れる電流

6.過渡現象を知るといろいろなことが見えてくる

 ① 回路電流=定常電流+過渡電流 ・・・・・・・(20)、(44)、(59)、(73)、(79)、(83)の各式

 ② 交流回路に直流電流が流れる ・・・・・・・・第3図、第6図など

 ③ 過渡現象におけるRLCの働き ・・・・・・・第3図、第6図、第7図、第8図

 ④ 大きな初期電流が流れる ・・・・・・・・・・第8図

 ⑤ いつも過渡現象が起こるとは限らない ・・・・第7図、第8図

 ⑥ その他

7.付表

  付表1−1 ラプラス変換表 (追加)